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INTRODUCTION 

In order to determiae the many fracture properties available to 

characterize materials, several parameters of the specimens used must be 

known.  Foremost among these parameters is the crack length.  Measuring 

properties such as J-reslstance curves, K-resistance curves, and fatigue crack 

growth rates, the crack length changes must be measured during the actual ' , 

test.  Several techniques have been devised to measure crack growth by 

Instrumenting the sample.  Perhaps the simplest method is the so-called 

"compliance" technique where the elastic compliance of the specimen is 

measured by simultaneously measuring the load and displacement of the sample. 

Since the elastic load-displacement characteristics of any cracked body are a 

function of the elastic properties of the material tested and specimen 

parameters including crack length, the elastic properties or the crack length 

for any sample can be determined If the other is known. 

Presented in this report are algebraic equations that allow for the easy 

calculation of either crack length or elastic properties for many standardized 

specimens. 

In order to determine the elastic properties of the material from which 

the specimen was laade, an expression which gives the load-displacement 

characteristics as a function of crack length must be developed.  Similarly, 

to calculate the crack length, an expression must be developed where the crack 

length Is a function of the load and displacement measured.  Expressions of 

both types were developed for all tVie standardized specimens in ASTM E-399 and 

for a rectangular pure bending sample. 

-'+!i 



The expressions are developed by first establishing the appropriate 

limiting displacements as the crack approaches zero length and as the 

remaining ligament approaches zero.  This is accomplished using the Paris 

equation (ref 1) based on Castigliano's theorem.  These limiting solutions 

serve as guides when choosing a nondlmenslonal form of the specimen 

displacements which has finite limits at short and long crack lengths. 

Numerically determined displacements are then normalized to the nondlmenslonal 

form derived from the limiting solutions, and multlvariable regression is used 

to fit a polynomial to these data.  The resulting algebraic equations 

represent the displacement solutions nominally within three percent over a 

wide range of specimen parameters. 

PROCEDURE TO DEVELOP t^ONDlMENSIONAL DISPLACEMENTS 

To determine an appropriate nondlmenslonal form of displacements for the 

various specimens considered, Paris's application of Castigliano's theorem to 

crack problems (ref 1) was used.  For the general two-dimensional cracked body 

shown in Figure 1, the displacement due at the location at the applied force F 

in the direction of F Is: 

2  a    3Kp 
6„ = — /  K_ da (1) 
*  E'  ap  P aF 

where Kp is the stress Intensity factor due to the force P, Kp is the stress 

intensity factor due to the force F, and E' Is Young's Modulus (E) for plane 

stress or E/(l-\>^)   (v = Poisson's ratio) for plane strain. 

^Tada, H., Paris, P., and Irwln, G., The Stress Analysis of Cracks Handbook, 
Del Research Corp., Hellertown, PA, 1973. 



For the short crack limit we use the K solution for a finite crack. In a 

seml-lnflnlte medium.  By placing a dummy load F at the crack mouth and 

replacing the load P with a uniform stress o, the crack mouth opening 

displacement can be derived.  The various K solutions necessary for Eq. (1) 

are (ref 2): 

Kp = 1.12a/il 

2.50F 
Kp = ----- 

MTa 

^%  2.60 

Substituting into Eq. (1) wa obtain: 

5.824aa 
'•'crack mouth ~  ~7 (2) 

A similar approach can be taken for the long crack limit.  In this case, 

we assume that for tension samples, the normal component is negligible.  Thus, 

only one K solution is necessary, namely that of a serai-infinite crack in a 

semi-Infinite medium subjected to a moment M.  For Eq. (1), Kp = x = 

3.975M/b3/2, where b is the uncracked ligament (W-a).  With this approach 

Integrating Eq. (1) gives us the angle of rotation of the two crack surfaces 

K 
15.8M 

'm 

E'(W-a)^B ■^   T7I/,.,_„N2. 

-Saxerra, A. and Hudak, S. J., Jr., International Journal of Fracture  Vol. 
14, No. 5, October 1978, pp. 453-468.' -' 



where 3 is the out-of-plane thickness of the specimen.  The crack mouth 

displacement Is estimated as the arc length swept out by Qj^ at the distance W, 

or 

15.8 HW 

E'(W-a)^B 
"crack mouth   ,77" ^~2r- ' 

Using Kqs. (1) and (2) xve can derive the appropriate nondimenstonal form 

of displacement based on the loading conditions and specimen parameters of the 

Individual samples being considered.  This enables us to fit an expression to 

the available data that gives the displacement as a function of crack length. 

Manipulating these equations will result in a mathematical form of displace- 

ments which is a function of crack length alone and has finite limits as the 

normalised crack length (a/W) approaches both :^ero and one. 

Developing an expression to calculate the crack length as a function of 

measured dis.nlacements is not as straightforward as the above procedure.  A 

first approach would be to solve for crack length In either Eq. (2) or Eq. (3) 

and use this as a aondiiuensional for/n of displacement.  For example, Eq. (3) 

can be written as: 
1/2 

a       15.3M '■■ 
- = 1 - (----:) (4) 

which applies as 6 > "°, but when 5 goes to zero, Eq. (4) predicts a crack 

length of negative infinity when it should give a value of zero.  Equation (4) 

can serve as guidance in selecting a form of nondiraensional displacement with 

reasonable limits that can be used to accurately calculate crack length.  We 

assume that: 

^ = f(5') (5) 



6- =  (6) 

1 + ( -) 
E'BWfi 

It is clear that as the displacement goes to zero, 5' also goes to zero 

and as 6 goes to infinity, 6' goes to one.  These limits enable the function 

f(6') to be fit to the numerical data with great accuracy.  A form of 

displacement similar to Eq. (6), has been suggested (ref 2) for a compact 

specimen. 

Some variation of Eqs. (2), (3), and (6) is necessary when finding 

expressions for the load line displacements of the three-point bend sample and 

for the arc tension sample.  But the resulting nondlmensional form of 

displacements is only subtly different from the above. 

RESULTS MD DISCaSSEON 

All of the specimens studied are shown in Figure 2.  Three cases for the 

bending sample are presented:  crack mouth opening displacement under pure 

bending, crack mouth opening displacement, and load line deflection under 

three-point bending.  The three tension samples considered were the compact 

tension, the disk-shaped compact tension, and the arc-shaped tension samples. 

Expressions are presented for the load line displacement and the crack mouth 

opening displacement for all the tension samples except the arc-shaped sample. 

Only crack mouth opening was considered for this sample. 

^Saxerra, A. and Hudak, S. J., Jr., International Journal of Fracture, Vol. 
14, No. 5, October 1978, pp. 453-468. 



Bending Samples 

For the crack mouth opening displacement under pare bending, the short 

and long crack limits using Eqs. (2) and (3) are: 

11m E'BW6 
  = 2.212 (7) 

a/W > 0   15.8M(a/W) 

lira       E'BW5(l-a/W)2 
  =1 (8) 

a/W ^ 1       15.8M 

Thus, we can represent the variation in displacements with (a/W) as 

S'BW6(l-a/W)2 
"Tr«M;"7m" ^ fPBCM(a/W) (9) 15 .8M(a/W) 

Normalizing the numerical data for this sample (ref 3) according to Eq. 

(9), fpRCM ^^^ found to be: 

fpBCM(a/W) = 2.212 - 4.78 a/W + 7.37 (a/W) ^ + 0.0830 (a/W)'^ 

- 10.4 (a/W)'* + 5.53 (a/W)^ (10) 

Representing a/W as a function of displacements, we used the following: 

1 
5- =  (3^1) 

1/2 15.8M '^ 
1 + (--—) 

E'BW6 

a/W = f PBCK('5') (12) 

Equation (12) has the limits of zero as a/W approaches zero and one as 

a/W goes to one.  Again, normalizing the numerical data f'pBCM can be 

developed as 

f'PBCM('5') = -0-986' + 5.1506-2 - 4.286'3l.116'^ (13) 

Gross, B., Roberts, E., Jr., and Srawley, J. E., International Journal of 
Fracture Mechanics, Vol. 4, 1968, p. 267. 
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The accuracy of Eqs. (10) and (13) is demoastrated by the comparison 

shown in Table I.  In Eq. (10) the displacement can be represented within 

± 1.5% for all a/W ratios, and the crack length can also be predicted within 

± 0.7% W for any displacement from Eq. (13). 

For the crack mouth opening displacement of the three-point bend sample, 

the short and long crack limits are essentially the same as Eqs. (7) and (8). 

The value of the moment is replaced by PS/4, thus these limits are 

1 im             E B o /1 / \ 
  =2.212               (14) 

a/W ^ 0   3.95P(S/W)(a/W) 

lim       ^^[^^^I'tl^ill  = 1 (15) 
a/W ^ 0    3.95P(S/W) 

The  nondimensional  form of   displacement   for  fitting   is  then 

E'B6(l-a/W)^ ,    ,' ,,,   " 
 1 =  f3PBCri(a/W)                                                 (16) 
3.95P(S/W)(a/W) 

f3P3CM(a/W) = 2.21 - 6.57 a/W + 17.9(a/W)^ - 

26.6(a/W)^ + 19.9(a/W)'* - 5.86(a/W)^        (17) 

To predict the crack length from displacement measurements, the same form 

as above was utilized: 

5, = i  (18) 
1/2 

3.95P(S/W)  ' 
1 + ( ) 

/ E'B5 

a/W = f'3PBCM(^') 

f3PBCM(^') = -l-Oa^' + 6.006-2 _ 6.375'3 + 2.736''* - 0.3216'5    (^g) 



Comparing Eqs. (17) and (19) with the numerical data (ref 3) in Table II 

shows again that the regression equations fit the data within ±3.4%. 

The load line deflection of the three-point bend sample requires more 

algebra than the two cases already presented. With no crack present, the beam 

will deflect due to the applied load.  Thus the total deflection is the 

deflection with no crack plus the additional deflection caused by the 

introduction of the crack.  The limiting solutions for the total deflection 

^tot then are: 
lira P(S/W)^  8.891P(S/W)2(a/W)'^ 

,5   = f  (^0) 
a/W ^0    '^°'^   4E'B E'B 

lim P(S/W)^  0.9875P(S/W) 
;^^^ = + -5- (21) 

a/W > 1 4E'B    e'B(l-a/W)^ 

Fitting the numerical data we used the following form of nondimensional 

deflection: 
EB^tot   (S/W)    (a/W)2 
  = + -—- f3PBLL(a/W) (22) 
P(S/W)'^    4    (1-a/W)^- 

f3PBLL(a/W) = 3.89 - 33.9 a/W + 68.5(a/W)^- - 68.1(a/W)3 + 25,6(a/W)'*  (23) 

Of the total displacement, the form used was 

S. = 1  (24) 

,    .9875   ,^/2 

E'B6tot   S/W 

P(s7w)2   4 

(a/W) = f3PBLL(*') (25) 

f 3PBLL('5') = 0.0997 - 0.5166' + 2.856'2 - 1.435'^ (26) 

^Gross, B., Roberts, E., Jr., and Srawley, J. E., International Journal of 
Fracture Mechanics, Vol. 4, 1968, p. 267. 



Table III compares the numerically determined load line displacements 

(ref 1) with Eqs. (23) and (26) for the case when S/W = 4. As the table 

indicates, the displacement as a function of a/W is accurate within ± 1.7% for 

any a/W and the crack length can be predicted from displacements within about 

± 0.4% for a/W > 0.2. 

Pin-Loaded Specimens 

Fitting expressions for the displacement of pin-loaded specimens is 

somewhat more difficult than with bending samples.  We are unable to use the 

short crack limit because that requires knowledge of the short crack K 

solution.  In the compact tension and disk-shaped compact tension configura- 

tions, Interactions with the pin loading holes must be considered when the 

relative crack length Is less than about 0.2.  Although the loading holes are 

not a factor with the arc-shaped tension, the value of the radius ratio 

{T2/VI)   strongly affects K for that sample at short crack depths.  We will 

concern ourselves only with tlie displacement characteristics for tension 

samples when a/W is greater than 0.2.  Thus, only the deep crack limit is 

considered.  For both the compact tension and the disk-shaped compact tension, 

Eq. (3) becomes 

llm 15.8P 
6 = -—- (27) 

a/W ■>■ 1       E'B(l-a/W)'^ 

This suggests that an appropriate nondimenslonal form of displacement for 

the compact specimen Is 

E'B6(l-a/W)^ 
 1 = f(a/w) (28) 

15.8P 

It should be noted that Eq. (27) applies only for load line displace- 

ments.  Remember that Eq. (3) was derived from the rotation of the crack 

^Tada, H., Paris, P., and Irwln, G., The Stress Analysis of Cracks Handbook, 
Del Research Corp., Hellertown, PA, 1973. 



surfaces Oj^j, and tVie displacement was estimated as the arc length at a 

distance W from the uncracked ligament.  At the crack mouth, the displacement 

would be the arc length approximated by 0^ x (W+A), where A Is the distance 

from the load line to the crack mouth.  Using this formulation would result In 

a rather messy equation.  For this reason we chose to use Eq. (28) as the non- 

dimensional form of displacements and restrict the applicability of the 

resulting expression to values of (a/W) less than 0.8. 

Four polynomials were found using Eq. (28):  load line displacements for 

both specimen types and crack mouth displacements for both specimens.  They 

are: 

Compact Tension - Load Line: 

fCTLL(a/W) = 0-121 + l.21(a/W) - 0.159(a/W)^ - 1.47(a/W)-- + 1.30(a/W)''  (29) 

Disk-Shaped Tension - Load Line: . 

fr)XLl(a/W) "■= 0.104 + l.ll(a/W) - 0.262(a/W) •' + 0.0247(a/W)-^ 
(30) 

+ 0.0223(a/W)'' 

Compact Tension - Crack Mouth: 

fCTGM(a/W) = 0.631 + 0.178(a/W) + 1.96(a/W)2 - 3.99(a/W)-'' + 2.48(a/W)'*  (31) 

Disk-Shaped Tension - Crack Mouth: 

fOTCM = 0-595 - 0.168(a/W) + 2.86(a/W)^ - 3.10(a/W)-^ + 1.26(a/W)'*      (32) 

Comparisons between the numerical data for compact tension samples (refs 

3,4) and Eqs. (29) and (31), and the data for disk-shaped compact tension 

•^Gross, B., Roberts, E., Jr., and Srawley, J. E., International Journal of 
Fracture Mechanics, Vol. 4, 1968, p. 267. 

^Newman, J. C, Jr., "Stress-Intensity Factors and Crack-Opening Displacements 
For Round Compact Specimens," NASA TM 80174, National Aeronautics and Space 
Administration, Langley Research Center, Hampton, VA, 1979. 
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samples (ref 4) and Eqs. (30) aad (32) are shown In Table IV.  The following 

accuracy statements can be made based on these comparisons.  For compact 

tension load line displacements ±0.2% for 0.2 < a/W < 0.8; for compact tension 

crack mouth displacements t 0.2% for 0.2 < a/W < 0.8; for disk-shaped compact 

tension load line displacements ± 0.3% for 0.2 < a/W < 0.8; and for disk- 

shaped compact tension crack mouth displacements ± 0.2% for 0.2 < a/W < 0.8. 

To determine crack length as a function of displacements, we used the 

following variation of Eq. (6): 

5. = 1  (33) 
15.8P ^^^ 

1 + ( --) 
EB6 

(a/W) = f(5') (34) 

Again, four polynomials were generated for the two samples each with two 

displacement measuring locations.  These equations are: 

Compact Tension-Load Line: 

a/W = -0.228 - 0.2526' + 4.606'^ - 4.416'3 + 1.295''+        (35) 

Disk-Shaped Tension-Load Line: 

a/W = 0.0896 - 1.816' + 7.616'2 - 7.196''^ + 2.306''^        (36) 

Compact Tension-Crack Mouth: 

a/W = -1.052 + 1.385' + 4.715'^ - 6.415'3 + 2.365''+        (37) 

Disk-Shaped Tension-Crack Mouth: 

a/W = -1.292 + 3.555' - 0.5896'2 _ 1.646.3 + o.9935'^        (38) 

^Newman, J. C, Jr., "Stress-Intensity Factors and Crack-Opening Displacements 
For Round Compact Specimens," NASA TM 80174, National Aeronautics and Space 
Administration, Langley Research Center, Hampton, VA, 1979. 

11 



Table V gives the comparison between the numerical data for these two 

specimens (refs 3,4) and the a/W values predicted by Eqs. (35) through (38). 

From the table, it can be concluded that the statistical data Elts have the 

following accuracies:  compact tension-load line ± 0.3% for a/W >  0.2; disk- 

shaped tension-load line t 0.1% for a/W >  0.2; compact tension-crack mouth 

t 0.1% for 0.2 < a/W < 1.0; disk-shaped tension-crack mouth ± 0.2% for 0.2 < 

a/W < 1.0. 

Arc-Shaped Tension Specimens 

Because of the many different geometries available for the arc-shaped 

samples, the wide range expressions are somewhat more complicated.  Again, we 

are not able to use the short crack limit but not because of loading hole 

Interactions, rather because of the curvature at the inner radius.  The stress 

at the inside radius is necessary to apply Eq. (2), which requires the curved 

beam theory.  The resulting nondimensional form of displacement is very 

complex. Thus, the effects of the eccentric loading (the X/W dependence) and 

the effects of radius ratio, r-i^/r2 must also be accounted for.  The long crack 

limit, Eq. (3) can be used and In terms of arc-shaped parameters we have: 

lim       E'B5(l-a/W)2 
 1 1- = 7.9 (39) 

a/W ^  1    (2X/W+l+a/W) 

This nondimensional form of displacement accounts for the X/W dependence 

for crack mouth displacements very nicely, but we still needed to account for 

^Gross, B., Roberts, E., Jr., and Srawley, J. E., International Journal of 
Fracture Mechanics, Vol. 4, 1968, p. 267. 
^Newman, J." C.~, Jr., "Stress-Intensity Factors and Crack-Opening Displacements 
For Round Compact Specimens," NASA TM 80174, National Aeronautics and Space 
Administration, Langley Research Center, Hampton, VA, 1979. 
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the rilr-y   effects by some other means.  Without the short crack limit, 

empirical techniques were necessary.  Using Eq. (39) to normalize the 

available data generated for this report revealed that corrections for the 

r-i^/r2 effect of no more than about ten percent were necessary.  These 

corrections are expressed in the following manner: 

E'B6  2X/W+l+a/W 
 =        - f^,j,(,^ (a/W, ri/r2) 
P     (l-a/W)-^ 

fATCM(a/W.^l/^2) = ^-^^ + ^"^-^5 a/W - 12.67(a/W)^- + 6.47(a/W)3 + 

+ (l-a/W)0-'35(l-ri/r2)(0.8-0.5 ri/r2) (^0) 

(\ comparison of the numerically generated displacements and Eq. (40) is 

given in Table IV.  The accuracy of the above expression can be stated as: for 

K/W = 0 and 0.4 ^ ri/r2 < 0.91, t 2.9% for 0.2 < a/W < 0.8, and i 0.4% for 

0.4 < a/W =i 0.5; for X/W = 0.5 and 0.4 < ri/r2 *^ 0.91, ± 3.6% for 0.2 < a/W < 

0.8, and t 1.5% for 0.4 < a/W ^0.6. 

For crack length as a function of displacement, we use a modification of 

Eq. (6): 

5. = 1  (41) 

,7.9(2X/W + 1)P .-""^^ 

E'BC 

This representation does not account for all of the X/W dependence or any 

of the ri^/r2 effects.  Again resorting to empirical methods, we can account 

for these effects by modifying Eq. (41) as: 

fi. =  h 0.4 X/W + 0.016 + 0.017 ri/r2    (42) 

,7.9(2X/W + 1)P y^ 
1 +   

E'S6 

13 



Using this fonn, tVie crack length can be expressed by: 

a/W = -0.941o'+ 4.2536'2 - 3.4605'3 + 1.1466''+ (43) 

where 6' is calculated by Eq. (42). 

Table VII cotupares Eq. (43) with the expected values of crack length. 

The errors as a percentage of W can be expressed as:  for X/W = 0 and 0.4 < 

ri/r2 < 0.91, ± 1.2% for 0.2 < a/W < 0.8, and +- 0.6% for 0.4 < a/W < 0.6; for 

X/W = 0.5 and 0.4 < ri/r2 ^ 0.9, ± 1.9% for 0.2 < a/W < 0.8 and ± 0.6% for 

0.4 < a/W "i 0.6. 

CONCLUSIONS 

Wide range displacement expressions for tnany standard fracture testing 

specimens were generated by using limiting solutions to develop the proper 

nondimensLonal form.  These expressions can be used to determine displacements 

when a/W is known or to determine crack length when the displacement and   ' 

elastic properties of the specimen are known.  These expressions iiay be useful 

when using the "compliance" method as a passive means of monitoring crack 

growth during fracture mechanics tests. 

14 
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TABLE   I.     CRACK  MOUTH  OPENING   DISPLACEMENTS   TOR   PURE   BENDING   SAMPLE 

a/W 

fpBCM 
(reE  3) 

fpBCM 
(Eq.   10) 

Error  (%) 

 0__ 

2.212 

2.212 

.2 

1.530 

1.537 

+0.5 

.3 

1.390 

1.375 

-1.1 

1.281 

1.285 

-0.3 

 ^5__ 

1.213 

1.229 

1.3 

1.193 

1.175 

-1.5 

 .7 

1.097 

1.106 

+0.8 

1.0 

1.0 

1.015 

1.5 

■^'PBCM 

a/W 
(Eq.   13) 

Error 
(as  %  of  W) 

.4088 

.1995 

-0.1 

.4798 

.3026 

+0.3 

,5440 

.4006 

+0.1 

.6090 

.5010 

+0.1 

.6790 

.6073 

+0.7 

.745 

.7032 

+0.3 

1.005 

+0.5 
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TABLE IV.  DISPLACEMENT FOR COMPACT TENSION SAMPLES 
AND DISK-SHAPED TENSION SAMPLES 

a/W 

^CTLL 
(ref 4) 

fCTLL 
(Eq. 29) 

Error (%) 

^DTLL 
(ref 4) 

foTLL 
(Eq. 30) 

Error (%) 

fCTCM 
(ref 4) 

fCTCM 
(Eq. 31) 

Error (%) 

^DTCM 
(ref 4) 

foTCM 
(Eq. 32) 

Error (%) 

0.3465 

0.3470 

+0.1 

0.3159 

0.3158 

0 

0.7170 

0.7170 

0 

0.6459 

0.6458 

.3 

0.4411 

0.4405 

-0.1 

0.4154 

0.4134 

-0.3 

0.7722 

0.7732 

+0.1 

0.7121 

0.7123 

.4 

0.5195 

0.5188 

-0.1 

0.5086 

0.5082 

-0.1 

0.8239 

0.8239 

0 

0.7906 

0.7905 

.5 

0.5842 

0.5838 

-0.1 

0.5984 

0.5980 

-0.1 

0.8661 

0.8663 

0 

0.8722 

0.8723 

.6 

0.6408 

0.6407 

0 

0.6846 

0.6839 

-0.1 

0.9015 

0.9030 

+0.2 

0.9521 

0.9527 

+0.1 

.7 

0.6992 

0.6980 

-0.2 

0.7672 

0.7664 

-0.1 

0.9426 

0.9429 

0 

1.029 

1.030 

+0.1 

.8 

0.7671 

0.7671 

0 

0.8471 

0.8461 

-0.1 

1.000 

1.001 

±0.1 

1.103 

1.105 

+0.2 
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TABLE VI.  CRACK MOUTH DISPLACEMENTS AS A FUNCTION OF CRACK LENGTH 
FOR ARC TENSION SAMPLES 

E'B6  2X/W+l+a/W 

P (1- a7w)2 

X/W = 0 

(.a/ w,!.]^/ "-If 

a/W 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 

ri/r2 = 0.9091 
E'B<S/P 5.119 9.504 16.58 29.21 54.38 113.5 292.2 

Eq. (40) 4.999 9.367 16.56 29.33 54.57 113.5 295.9 

ERROR (%) -2.3 -1.4 -0.1 +0.4 +0.4 0 +1.3 

r]^/r2 = .6667 
EVB6/P 5.356 9.843 17.07 29.98 55.67 115.8 302.6 

Eq. (40) 5.323 9.696 17.04 30.07 55.81 115.8 301.4 

ERROR (%) -2.3 -1.5 -0.2 +0.3 +0.3 0 -0.4 

r]^/r2 = 0.5 
E'B6/P 5.621 10.17 17.54 30.63 56.77 117.7 304.9 

Eq. (40) 5.456 10.01 17.51 30.78 57.00 118.0 306.7 

ERROR (%) -2.9 -1.5 -0.2 +0.3 +0.4 +0.3 +0.6 

X/W = 0.5 

ri/r2 = 0.9091 
E'B6/P 8.848 16.24 27.97 48.52 88.80 181.8 458.6 

Eq. (40) 9.165 16.57 28.39 48.37 88.69 180.2 460.3 

ERROR (%) +3.6 +2.0 +1.5 +0.7 -0.1 -0.9 +0.4 

x\lr2  = .6667 
E'B6/P 9.300 16.91 28.39 50.00 91.16 185.9 475.3 

Eq. (40) 9.592 17.16 29.21 50.11 90.69 183.9 468.9 

ERROR (%) +3.1 +1.5 +1.0 +0.2 -0.5 -1.0 -1.4 

ri/r2 = 0.5 
E'B6/P 9.788 17.53 29.83 51.32 93.17 189.1 479.2 

Eq. (40) 10.00 17.71 30.01 51.30 92.63 187.5 477.2 
ERROR (%) +2.2 +1.0 +0.6 -0.1 -0.6 -0.9 -0.4 
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TABLE  VII.     CRACK  LENGTHS  AS  A  FUNCTION  OF  CRACK  MOUTH  DISPLACEMENTS 
FOR ARC  TENSION   SAMPLES 

,P[2X/W+I] 
u      =    [i   -r 

E''B6 
 ;---j -t-    U.'ty S./W   -1-   'J.i jio  -t- u.^ Ji/   r;i^/r2 

a/ 'W =   f(6 •) 

X/W =0.0 

ri/r2 =  0.9091 

  

E'B6/P 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
Eq.   (43) .203 .304 .401 .498 .598 .703 .812 
ERROR  (%W) +0.3 +0.4 +0.1 -0.2 -0.2 +0.3 +1.2 

ri/r2  =   .6667 
E'B6/P 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
Eq.   (43) .205 .305 .400 .496 .595 .699 .808 
ERROR  (%W) +0.5 +0.5 0 -0.4 -0.5 -0.1 +0.8 

ri/r2 = 0.5 
E'B6/P 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
Eq.   (43) .209 .306 .400 .594 .594 .696 .804 
ERROR  (%W) +0.9 +0.6 0 -0.6 -0.6 -0.4 +0.4 

X/W = 0.5 

vilvo  =  0.9091 
E'B5/P 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
Eq.   (43) .206 .305 .400 .496 .597 .704 .819 
ERROR  (%W) +0.6 +0.6 0 -0.4 -0.3 +0.4 +1.9 

r]^/r2 =   .6667 
E'Bo/P 0.2 0,3 0.4 0.5 0.6 0.7 0.8 
Eq.   (43) .208 .306 .400 .495 .595 .701 .816 
ERROR  (%W) +0.8 +0.6 0 -0.5 -0.5 +0.1 +1.6 

ri/r2 =  0.5 
E'B6/P 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
Eq.   (43) .213 .308 .401 .495 .594 .698 .812 
ERROR (%W) +1.3 +0.8 +0.1 -0.5 -0.6 -0.2 +1.2 
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Figure 1.  A general two-dimensional cracked body. 
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